Computer Aided Classification of Neuroblastoma Histological Images Using Scale Invariant Feature Transform with Feature Encoding
نویسندگان
چکیده
منابع مشابه
Classification of Satellite Images based on Scale-Invariant Feature Transform
From the immense amount of images being sent to Earth by satellites, it takes too much time for a human to go through each image and classify what the image represents. Therefore, we are able to use classifiers to classify these images. In this paper, we used two different classification methods to classify satellite images. Between the two classifiers we used, both K-Nearest-Neighbor and Suppo...
متن کاملDetection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship
Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...
متن کاملPerformance Evaluation of Scale Invariant Feature Transform
The SIFT algorithm produces keypoint descriptors. This paper analyzes that the SIFT algorithm generates the number of keypoints when we increase a parameter (number of sublevels per octave). SIFT has a good hit rate for this analysis. The algorithm was tested over a specific data set, and the experiments were conducted to increase the performance of SIFT in terms of accuracy and efficiency so a...
متن کامل-SIFT: -Dimensional Scale Invariant Feature Transform
We propose the -dimensional scale invariant feature transform ( -SIFT) method for extracting and matching salient features from scalar images of arbitrary dimensionality, and compare this method’s performance to other related features. The proposed features extend the concepts used for 2-D scalar images in the computer vision SIFT technique for extracting and matching distinctive scale invarian...
متن کاملGlobal Robot Localization using Iterative Scale Invariant Feature Transform
We propose an approach that can reduce the feature extraction time of the Scale Invariant Feature Transform (SIFT). The main idea is to search for the keypoints around a set of randomly generated particles rather than to perform exhaustive search in the whole difference of Gaussian pyramid. The proposed approach makes it possible to define the required number of keypoints in advance. A relation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Diagnostics
سال: 2018
ISSN: 2075-4418
DOI: 10.3390/diagnostics8030056